Co-designing electronics and microfluidics for a cooling boost

The heat generated by today’s densely-packed electronics is a costly resource drain. To keep systems at the right temperature for optimal computational performance, data center cooling in the United States consumes the as much energy and water as all the residents of the city of Philadelphia. Now, by integrating liquid cooling channels directly into semiconductor chips, researchers hope to reduce that drain at least in power electronics devices, making them smaller, cheaper and less energy-intensive. 

Traditionally, the electronics and the heat management system are designed and made separately, says Elison Matioli, an electrical engineering professor at École Polytechnique Fédérale de Lausanne in Switzerland. That introduces a fundamental obstacle to improving cooling efficiency since heat has to propagate relatively long distances through multiple materials for removal. In today’s processors, for instance, thermal materials syphon heat away from the chip to a bulky, air-cooled copper heat sink.

For a more energy-efficient solution, Matioli and his colleagues have developed a low-cost process to put a 3D network of microfluidic cooling channels directly into a semiconductor chip. Liquids remove heat better than air, and the idea is to put coolant micrometers away from chip hot spots.

But unlike previously reported microfluidic cooling techniques, he says, “we design the electronics and the cooling together from the beginning.” So the microchannels are right underneath the active region of each transistor device, where it heats up the most, which increases cooling performance by a factor of 50. They reported their co-design concept in the journal Nature today.

Researchers first proposed microchannel cooling back in 1981, and startups such as Cooligy have pursued the idea for processors. But the semiconductor industry is moving from planar devices to 3D ones and towards future chips with stacked multi-layer architectures, which makes cooling channels impractical. “This type of embedded cooling solution is not meant for modern processors and chips, like the CPU,” says Tiwei Wei, who studies electronic cooling solutions at Interuniversity Microelectronics Centre and KU Leuven in Belgium.  Instead, this cooling technology makes the most sense for power electronics, he says.

Power electronics circuits manage and convert electrical energy, and are used widely in computers, data centers, solar panels, and electric vehicles, among other things. They use large-area discrete devices made from wide-bandgap semiconductors like gallium nitride. The power density of these devices has gone up dramatically over the years, which means they have to be “hooked to a massive heat sink,” Matioli says.

Pages: 1 2
Tags:
nv-author-image